Hemangiopericytoma with immunohistochemical examination:

An autopsy case

Satoshi Furukawa^{1*}, Lisa Wingenfeld¹, Akari Takaya¹, Tokiko Nakagawa¹, Ikuo Sakaguch¹, Satomu Morita¹, Shigeru Yamasaki¹, Katsuji Nishi¹

Abstract: Hemangiopericytoma is a rare vascular soft-tissue tumor arising from the pericytes adjacent to capillaries. In this case report a semi-solid mass $(5.5 \times 5.0 \times 3.5 \text{cm})$ originating from the greater omentum was detected at autopsy. Histopathologically, the tumor had a number of capillaries and dense spindle-shaped tumor cells that proliferated around the blood vessels. Histological and immunohistochemical findings confirmed a diagnosis of hemangiopericytoma. We report a case of hemangiopericytoma arising in the greater omentum and review the literature.

Key Words: hemangiopericytoma, greater omentum, autopsy, histological and immunohistochemical findings.

Hemangiopericytoma is rare mesenchymal neoplasms, accounting for about 1% of vascular tumors [1]. Hemangiopericytoma is known to be derived from vascular pericytes and the first report was by Stout and Murray in 1942 [2]. Pericytes are rudimentary cells that have contractile properties and regulate the blood flow through capillaries. Although hemangiopericytoma can arise anywhere, the musculature of the lower extremities, the pelvic fossa, and the retroperitoneum are the predominant sites of origin [3-6]. Histopathologically, the tumor consists of a large number of capillaries and small vessels, dense spindle shaped tumor cells, and reticular fibers [3].

Immunohistochemically, hemangiopericytoma is known to show a positive response to antibodies against vimentin and type IV collagen, and a negative response to S-100 protein and cytokeratins [7]. We report an autopsy case with hemangiopericytoma originating in the greater omentum.

Case report

A 69-year-old man was found lying dead on the floor by the police after being alarmed by the brother after not having been seen for several days.

Autopsy findings

At autopsy the victim weighed 56.4kg and the

medical history was unremarkable. An anomalous semisolid tissue mass with a pyramidal form was present in the greater omentum (Figure 1). The pyramidal mass with dimensions of 5.5 cm×5.0 cm×3.5 cm, was not connected but adhered to the stomach (Figures 2 and 3). The cut surface was smooth, elastic and pale brown in color (Figure 4). There were no other abdominal findings and the thorax was clear. Death was found to be due to hypothermia.

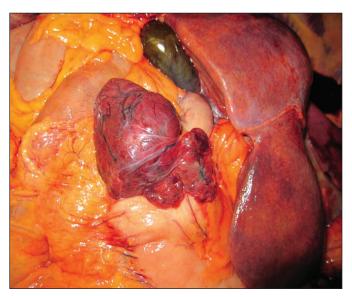
Histological and immunohistochemical findings
The histological examination with hematoxylineosin staining demonstrated that spindle cells grew around the vascular endothelial cells and no mitoses were found under high -power magnification (Figure 5). Immunohistochemical examination showed that the tumor was positive for CD34, anti-smooth muscle actin, type IV collagen and vimentin and negative for S-100 protein and cytokeratins (Figures 6-11). These findings confirmed the diagnosis of hemangiopericytoma.

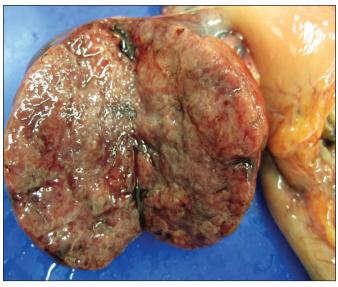
Discussion

Hemangiopericytoma usually develops in deep soft tissues and mostly affect middle aged patients [3,8]. There is no sex predilection and no evidence of increased familial incidence. It is a rare type of primary vascular

¹⁾ Department of Legal Medicine, Shiga University of Medical Science, Shiga, Japan

^{*}Corresponding author: MD, Department of Legal Medicine, Shiga University of Medical Science, Setatsukinowa, Otsu City, Shiga 520-2192, Japan, Tel & Fax: +81-77-548-2202, E-mail. 31041220@belle.shiga-med.ac.jp




Figure 1: A solitary mass arose in the greater omentum

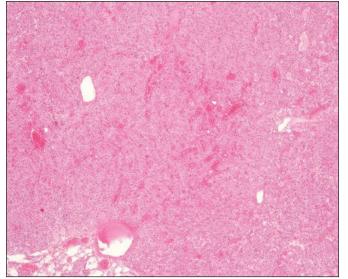

Figure 2: The mass was not connected but adhered to the stomach

Figure 3: Macroscopic appearance of the mass

Figure 4: The resected mass measured $5.5 \times 5.0 \times 3.5$ cm, and was semi-solid and encapsuled without necrosis or hemorrhage

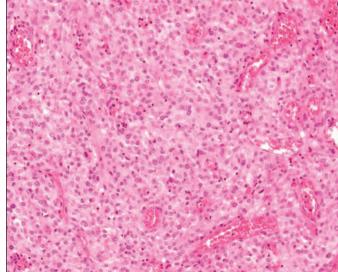


Figure 5: Microscopic appearance of the mass (H-E \times 40, \times 200). There were rich in capillaries and small vessels with a single layer of endothelium and dense spindle-shaped tumor cells that proliferated around blood vessels

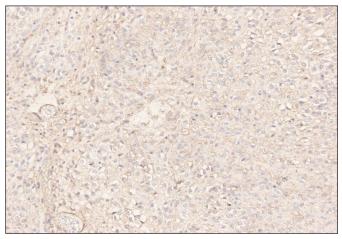


Figure 6: Staining for CD 34 was positive in the endothelial cells of the capillaries. (×200)

Figure 7

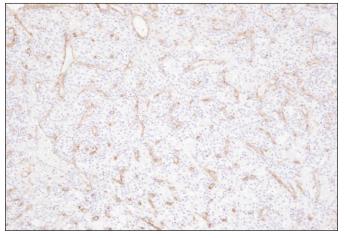


Figure 8

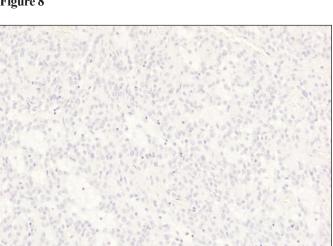


Figure 9

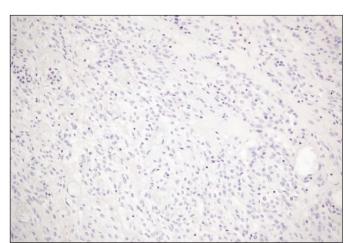


Figure 10 Figure 11

Tumor cells clearly positive for (Figure 7) anti-smooth-actin protein, (Figure 8) type IV collagen, and (Figure 9) vimentin (all stains, original magnification ×200). Tumor cells negative reaction for (Figure 10) S-100 protein and (Figure 11) cytokeratins (all stains, original magnification ×200).

tumor with mesenchymal origin that accounts for 1% of all vascular neoplasms [9].

Hemangiopericytoma is usually present as a solitary mass covered by a thin vascular pseudocapsule and the median size of excised tumors was reported to be 6.5cm [3]. Histologically, hemangiopericytoma proliferation of spindle shaped cells around branching capillary vessels.

The tumor cells originate from the pericytes found around capillaries and postcapillary venules in almost every tissue of the body.

Immunohistochemically, hemangiopericytomas stain positive for CD34 [10] and are known to show a positive response to antibodies against vimentin and type IV collagen and a negative response to S-100 protein and

cytokeratins [11]. The specimen in the case reported here fulfilled these specifications and confirmed the diagnosis of hemangiopericytoma.

Conclusion

We reported an autopsy case with an anomalous semi-solid tissue mass which presented in the greater omentum. We showed immunohistochemical examination: CD34, anti-smooth muscle actin, type IV collagen, vimentin, S-100 protein and cytokeratins.

We diagnosed hemangiopericytoma from the result of these stains.

Acknowledgements

We thank Shiga University of Medical Science for supporting this project and permission to publish the article.

References

- 1. Hart LL, Weinberg JB. Metastatic hemangiopericytoma with prolonged survival. Cancer 1987, 60: 916-920.
- 2. Stout AP, Murray MR. Hemangiopericytoma: a vascular tumor featuring Zimmerman's pericytes. Ann Surg 1942, 116: 26-33.
- 3. Enzinger FM, Smith BH. Hemangiopericytoma: an analysis of 106 cases. Hum Pathol 1976; 7: 61-82.
- 4. Goldberger RE, Schein CJ. Hemangiopericytoma of the omentum: report of a case with a unique presentation and review of the literature. Am Surg 1968; 34: 291-295.
- 5. Cajano P, Heys SD, Eremin O. Hemangiopericytoma of the greater omentum. Eur J Surg Oncol 1995; 21: 323-324.
- 6. Bertolotto M, Cittadini G, Crespi G, Perrone C, Pastorino R. Hemangiopericytoma of the greater omentum: US and CT appearance. Eur Radiol 1996; 6: 454-456.
- 7. Rusch VW, Shuman WP, Schmidt R, Laramore GE. Massive pulmonary hemangiopericytoma. An innovative approach to evaluation and treatment. Cancer 1989; 64: 1928-1936.
- 8. Espat NJ, Lewis JJ, Leung D, Woodruff JM, Antonescu CR, Shia J. Conventional hemangiopericytoma: modern analysis of outcome. Cancer 2002; 95: 1746-1751.
- 9. Burgess NA, Hudd C, Matthews N. Two cases of hemangiopericytoma. BJU 1993; 71: 238-239.
- 10. Weis SW, Goldblum JR. Perivascular tumors. In: Weis SW, Goldblum JR, editors. Enzinger and Weiss's soft tissue tumors. 4th ed. St. Louis: Mosby; 2001. P. 985-1035.
- 11. Yoshida M, Morita M, Kakimoto S, Kawakami M, Sasaki S. Primary hemangiopericytoma of the trachea. Ann Thorac Surg 2003; 76: 944-946.