The first fatal dengue virus infection case in Turkey: Autopsy findings

Bülent Değirmenci1, Taner Akar2*, Sait Özsoy3, Mehtap Özdemir1, Bora Özdemir1, Birol Demirel2

Abstract: Dengue is the fastest spreading arboviral infection in the world. It is responsible for about 50 to 200 million infections annually. Turkey is accepted in the World Health Organization European region and dengue is now endemic in all World Health Organization regions except for the European region, but people can travel anywhere in the world and they can catch a disease easily. Approximately 2.5 billion people live in dengue endemic countries; therefore, it may be endemic in Europe as well in the near future. It might be seen with increasing frequency in forensic mortuaries soon. In such a situation, the autopsy staff have to keep dengue virus infections in mind to protect themselves from contamination and to detect the cause of death.

A case of a 65-year-old Thailand citizen male who died in Turkey is presented. He had skin rashes all over the body. His internal examination revealed, 1900 ml, 1700 ml and 80 ml sero-hemorrhagic fluid in the right chest, left chest and pericardial cavities respectively. The sectional cuts of the lungs showed hemorrhagic fluid leakage. Ecchymosis due to intubation was found in the upper tracheal region. Mesocolon transversum showed hemorrhage as well. Blood test results showed Dengue Virus Immunoglobulin G (IFA) and Immunoglobulin M (IFA) positive, Japanese encephalitis virus Immunoglobulin M (IFA) negative and Immunoglobulin G (IFA) positive.

Key Words: Dengue virus, autopsy, Turkey.

The Flaviviridae family is divided into four genera; Flavivirus, Pestivirus, Pegivirus, and Hepacivirus [1]. The Flavivirus genus can be further divided into four categories; the mosquito-borne, tick-borne, no-known vector and insect-specific viruses [1, 2]. Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis, Saint Louis Encephalitis and Murray Valley Encephalitis viruses all belong to the mosquito borne Flavivirus genus [1-4].

Self-limited classic dengue fever, dengue haemorrhagic fever and dengue shock syndrome are caused by the dengue virus which is usually transmitted by the female mosquito Aedes aegypti and sometimes by Aedes albopictus [4-13]. Dengue diseases are the second most prevalent mosquito-borne infections after malaria [14]. Symptoms of severe dengue haemorrhagic fever and dengue shock syndrome are cold and sweaty skin, gastrointestinal bleeding and spontaneous bleeding from gums and nose. Dengue shock syndrome is characterized by increased vascular permeability [6]. The fluid in the blood vessels leaks to the skin, the spaces around the lungs and the abdomen. The fluid leaks and bleedings give rise to hypotension and shock with a mortality rate of 5% [5, 15]. Byard suggests that the untreated dengue shock syndrome has more than 20% mortality rate [4].

In Turkey, the dengue virus infection was seen only in one non-fatal case who had a travel history to risky regions. Our case was the first and only fatal dengue virus infection in Turkey. Therefore, the autopsy staff have to keep this rare case in mind to protect themselves from contamination and to detect the cause of death.
contamination and in suspected cases they have to demand
dengue virus specific antibodies in either serum or plasma
during autopsies for detection of causes of death.

CASE

In April 2014, a 65-year old Thailand citizen male
had a diabetes mellitus (DM) came to Turkey for a five-day
trip. On the fourth day of the trip, he told the tour guide
that he felt inappetence, extreme tiredness and dyspnea
for a few days. He had a fever of 39 °C. On the fifth day,
the tour ended and the group reached the airport. Then,
his condition deteriorated and the tour guide called an
ambulance. Physicians determined the bradycardia,
bradypnea and high blood glucose level (495 mg/dL). He
was intubated and afterwards, he was brought to hospital
with cardio-pulmonary arrest. He died after a 45 minute-
resuscitation attempt.

An external examination revealed skin rashes all
over the body (Fig. 1) and injection marks on the bilateral
ante-cubital fossa. An internal examination revealed, 1900
mL, 1700 mL and 80 mL sero-haemorrhagic fluid in the
right chest, left chest and pericardial cavities respectively
(Fig. 2). The left lung was measured 327 g and the right
lung was measured 451 g. Both lung surfaces showed
haemorrhagic spots. The sectional cuts of the lungs
showed haemorrhagic fluid leakage and microscopic
examinations of the lungs revealed micro haemorrhages
(Fig. 3). Ecchymosis (4x1 cm) due to intubation was found
in the upper tracheal region. Mesocolon transversum
showed haemorrhage (8x6 cm) as well. Toxicological test
results of blood showed 375 ng/mL gliclazide and 466 ng/
mL metformin and urine showed gliclazide, metformin
and tolbutamide. We suspected of a dengue virus infection
during the autopsy and we sent the deceased’s blood
samples to the Ministry of Health Viral Infections Unit for
the purpose of dengue virus serologic investigation. The
deceased’s blood test results showed Dengue Virus IgG
(IFA) and IgM (IFA) positive, Japanese encephalitis virus
IgM (IFA) negative and IgG (IFA) positive.

On the basis of autopsy findings and serologic
test results, we declared the cause of death as “Dengue
Haemorrhagic Fever”.

DISCUSSION

Dengue is the fastest spreading arboviral infection
in the World [7, 9, 16, 17]. It is responsible for about 50 to
200 million infections annually [7, 18]. Its incidence has
increased 30-fold during the past 50 years [4, 7, 9]. Turkey
is accepted in the WHO European region and dengue is
now endemic in all WHO regions except for the European
region [7]. Approximately 2.5 billion people live in dengue
endemic countries [7]; therefore, it may be endemic in
Europe as well in the near future. Dengue is determined in
16% of returning travellers with febrile illness [4].

Although Ergünay’s and Tezcan’s
seroepidemiological studies showed the presence of
dengue virus in Turkey [19, 20], the first and the last non-
fatal dengue fever cases were reported in 2013. A forty-year
old Swiss citizen male moved to India from Dubai two
weeks ago. One week later, he was admitted to a hospital
in India with high fever. The test results showed NS1
antigen positive [21]. The dengue virus genome encodes
3 structural (capsid, membrane and envelope) and 7 non-
structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) [4]. These nonstructural proteins play a role in viral replication and assembly [21]. So he was diagnosed with dengue fever. In Turkey, he went to hospital for control. He revealed only skin rashes on his lower extremities and no fever. The serum sample showed the Dengue Virus IgG and IgM positive. Then, he was discharged from hospital [21]. After this non-fatal case, our case was the first fatal dengue virus infection in Turkey.

Dengue patients with co-morbidities are prone to fatal complications [14, 22-25]. Saqib et al. and Leo et al. reported that 58% and 75% of dengue patients were suffering from co-morbidities respectively [14,22]. Our case also suffered from diabetes mellitus. In Leo et al.’s study, diabetes mellitus was the third most seen co-morbidity after hypertension and cardiovascular diseases in dengue patients [22]. Figueiredo et al. concluded that dengue patients with allergies or diabetes mellitus have 2.5 times more risk of developing dengue haemorrhagic fever [23]. Diabetes mellitus, sickle cell anemia, asthma and peptic ulcer are associated with severe Dengue [4].

An organ failure, including acute respiratory failure requiring mechanical ventilation or hematologic failure (active bleeding requiring blood transfusion) is among the major fatal complications in dengue patients [26]. In our case, we found the possible evidence of these two complications such as massive sero-haemorrhagic fluid in both chest cavities and pericardial cavity (total 3680 mL), haemorrhagic fluid leakage from both lung sections, hemorrhage at the mesocolon transversum and ecchymosis due to intubation in the upper trachea.

Dengue infection's clinical symptoms are analogous with many other acute febrile illnesses [27]. For example, Chikungunya and dengue skin lesions are similar and difficult to differentiate. Rash is a common lesion in both diseases as seen in our case [28]. Therefore, diagnosis relies on serological tests based on the detection of dengue specific IgM antibodies during the acute phase of infection [27]. However, antibodies of other flaviviruses, especially the Japanese encephalitis virus, may cross-react and cause a false-positive result [27]. The blood test results of our case showed the Dengue Virus IgM (IFA) and IgG (IFA) positive, the Japanese encephalitis virus IgM (IFA) negative and IgG (IFA) positive.

In Turkey, the dengue virus and all other viral serological tests are not routine at autopsies today. In forensic practice, forensic examiners rarely know the deceased’s ante mortem health condition, especially infections which have a transmission risk to autopsy staff during autopsies as the dengue virus. Therefore, autopsy staff have to keep these rare cases in mind to protect themselves from contamination and to detect the cause of death. All autopsies must be performed in a Biosafety Level-2 (BSL-2) precautions augmented by Biosafety Level-3 (BSL-3) facility ventilation and respiratory precautions [29]. According to Centers for Disease Control and Prevention (CDC) Morbidity and Mortality Weekly Report published on June 11, 2004, dengue viruses are accepted in the probable biological terrorism agents [30]. Many infections such as tuberculosis, blastomycosis, coccidioidomycosis, acquired immuno-deficiency syndrome, hepatitis B and C (or non-A, non-B), rabies, tubularema, diphtheria, erysipeloid fever, and some of the viral haemorrhagic fevers are transmitted through direct inoculation during autopsies [3, 29]. According to the “Biosafety in Microbiological and Biomedical Laboratories” developed by the American Committee on Arthropod-Borne Viruses (ACAV), the Subcommittee on Arbovirus Laboratory Safety (SALS), the Center for Disease Control and Prevention (CDC) and the National Institute of Health, all dengue viruses are in biohazard group 2. Thus, the autopsy of a deceased dying of the dengue virus must be performed in a BSL-2 laboratory conditions [31, 32]. Despite all the international biosafety rules, the forensic examiner was diagnosed with autopsy-transmitted CCHF in Turkey. She cut her hand by scalpel during the autopsy of the deceased whose cause of death was unknown. 10-15 days after the incident, she was admitted to the hospital with complaint of fatigue and fever of 39-40 °C. Then she was diagnosed with Crimean-Congo haemorrhagic fever (CCHF). After treatment, she was discharged and she completely recovered. The examination on the deceased blood revealed CCHF RNA PCR (+), IgM ELISA (-) and the cause of his death was identified as the CCHF infection (3).

CONCLUSION

The dengue virus seems to be non-endemic in the WHO European region, but people can travel anywhere in the world and they can catch a disease easily. Nowadays the refugee issue is one of the most important health problem in Middle East and Europe. In 2007, mosquito Aedes Albopictus was reported from Syria for the first time. Today total 4.840.659 Syrian refugees registered by United Nations Refugee Agency and the Government of Turkey [33]. Turkey acts as the bridge between Europe and Asia where the Dengue is endemic. There is a real risk of the emergence of dengue fever in Syria, Turkey and Europe under the present conditions [34].

It is hard to diagnose the actual cause of disease as the dengue virus based on its symptoms. When the patient gives the travel history to endemic regions, physicians have to suspect of the virus. Otherwise, those patients may die before a diagnosis can be made. It might be seen with increasing frequency in forensic mortuaries in the near future. In such a situation, the autopsy staff have to keep dengue virus infections in mind to protect themselves from contamination and to detect the cause of death.

Conflict of interest. The authors declare that they have no conflict of interest concerning this article.
References